УДК 539.196+541.65

Ходиев Масрур Хомидходжаевич

ИК-СПЕКТРОСКОПИЯ И КВАНТОВО-ХИМИЧЕСКИЙ РАСЧЁТ Н-КОМПЛЕКСОВ ПРОИЗВОДНЫХ ТРИАЗОЛА

Специальность: 1.3.8.-физика конденсированного состояния

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена на кафедре оптики и спектроскопии Таджикского национального университета.

Научные руководители:

Муллоев Нурулло Урунбоевич - доктор физ.-мат. наук, доцент, зав. кафедрой оптики и спектроскопии Таджикского нацио-

нального университета;

Лаврик Николай Львович - доктор хим. наук, ведущий научный сотрудник Института химической кинетики и горения им.

В.В.Воеводского СО РАН.

Официальные оппоненты: Константин Станиславович Ругковский

- доктор физ.-мат. наук, профессор кафедры молекулярной спектроскопии Санкт-Петербургского государственного университета

Исобаев Музафар Джумаевич-доктор химических наук, профессор, заведующий лабораторией органического синтеза Инсти-

тут химии им. В.И.Никитина НАНТ

Ведущая организация:

ФГБУН «Федеральный исследовательский центр «Институт катализа имени Г. К. Борескова Сибирского отделения Российской академии наук»

Защита состоится « 7 » Июня 2022 г. в 10:00 часов на заседании объединенного диссертационного совета 99.0.057.02 по защите докторских и кандидатских диссертаций при Таджикском национальном университете по адресу: 734025, Республика Таджикистан, г. Душанбе, проспект Рудаки, 17, факс (992-372)21-77-11. Зал заседаний диссертационных советов.

Отзывы направлять по адресу: 734025, г. Душанбе, проспект Рудаки, 17, ТНУ, диссертационный совет 99.0.057.02, E-mail: tgnu@mail.tj.

С диссертацией можно ознакомиться в научной библиотеке и на сайте Таджикского национального университета (www.tnu.tj).

Автореферат разослан «»	2022 г.
Ученый секретарь объединённого	
диссертационного совета 99.0.057.02	
кандидат физмат. наук, СНС	Табаров С.Х.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Практическое использование сложных молекулярных систем в конденсированном состоянии в различных областях науки и практики в значительной степени зависит от их протонодонорных и протоноакцепторных свойств. Эти свойства во многом определяют их реакционную способность, которая определяется молекулярной структурой вещества, наличием или отсутствием специфических функциональных группировок, их пространственной локализации.

Одним из видов проявления донорно-акцепторного взаимодействия является водородная связь (Н-связь), которая образуется между молекулами донорами протона и молекулами акцепторами протона. Эффективность такого взаимодействия зависит от исходной геометрической структуры и распределения электронной плотности взаимодействующих субъектов.

ности взаимодеиствующих суоъектов.

Среди веществ, способных к образованию Н-связей, особое место занимают гетероциклические соединения, которые в последнее время находят все большее практическое применение. Особо следует выделить фармакологию, по запросам которой синтезируется много новых эффективных лекарственных препаратов. В этой связи большой научный и практический интерес представляет исследование протонодонорных и протоноакцепторных свойств замещённых триазолов.

мещённых триазолов.

С помощью ИК-спектроскопии можно быстро и надёжно идентифицировать разнообразные функциональные группы, изучать внутри- и межмолекулярное взаимодействие и, в частности, образование водородных связей. В связи с этим изучение возможностей гетероциклических соединений образовывать водородные связи методом ИК-спектроскопии, безусловно, является надёжным способом, поскольку в ИК-спектрах поглощения проявляются колебания отдельных групп и связей молекул, а также их изменение под действием внешних факторов.

В последнее время при анализе и интерпретации экспериментальных данных по ИК-спектроскопии стали широко применяться квантово-химические расчёты колебательных спектров. Совместное использование методов ИК-спектроскопии и квантово-химических расчётов позволяет более глубоко понять природу колебаний отдельных функциональных групп в сложных молекуляр-

ных системах и, в частности, их динамику при образовании Н-связей. Таким образом, квантово-химические расчёты являются важнейшим дополнением к классическому методу интерпретации экспериментальных данных по ИК-спектроскопии.

Степень разработанности темы исследования. В литературе отсутствует описание систематических исследований изменения протонодонорной и протоноакцепторной способности гетероциклических соединений производных триазолов в зависитероскопии. тероциклических соединении производных триазолов в зависимости от природы введенных в молекулярный цикл новых структурных фрагментов. Например, в частности, имеется информация, в которой содержатся только данные о спектральных характеристиках некоторых из производных триазолов, а для 3-метил—1,2,4-триазол-5-тиола, 1,2,4-триазол-5-тиола, такие данные вовсе отсутствуют. В опубликованных работах не проводился сравнительный анализ их спектроскопических и донорно-акцепторных свойств. Кроме того, в литературе отсутствуют данные о зависимости изменения спектральных и донорно-акцепторных свойств при введении в цикл или присоединении к нему «новых» структурных фрагментов относительно исходных соединений, и, соответственно, отсутствует объяснение природы возможного изменения этих свойств под действием внутри- и межмолекулярных факторов. Также в литературе не имелось сведений о решении таких вопросов как:

-влияние изменения электронной и геометрической структуры на спектральные свойства производных триазола в твердой и жидкой фазах;

-влияние электронного и геометрического строения производных триазолов на их протонодонорную способность;
-определение активного протоноакцепторного центра в производных триазола при образовании Н-комплекса;
-изучение природы образования Н-комплексов 1,2,3-

-изучение природы ооразования Н-комплексов 1,2,3-бензотриазола с протоноакцепторными молекулами. Выявление электростатического и ковалентного вкладов в образование Н-комплексов, поскольку систематическая информация о механизме межмолекулярного взаимодействия типа Н-связи для молекул азольного ряда отсутствует. Наконец, общим моментом в неполной разработке указанной темы диссертации является не систематиче-ское применение квантово-химических расчётов, которые в насто-

ящее время являются современным инструментом изучения природы образования Н-комплексов.

Объект исследования. Объектом исследования является пятичленные гетероциклические соединения азольного ряда 1,2,4-триазол, 1,2,3-бензотриазол, 3-метил—1,2,4-триазол-5-тиол, 1,2,4триазол-5-тиол.

Цель диссертационной работы. Основной целью настоящей работы было изучение зависимости донорно-акцепторных свойств гетероциклических соединений (на примере ряда азолов) при введении в цикл или присоединении к нему «новых» структурных фрагментов относительно исходных соединений и выявление электростатического и ковалентного вкладов в образование Нкомплексов. Для успешного решения поставленных задач было необходимо использовать как экспериментальные методы ИК-

- спектроскопии, так и расчётные методы квантовой химии.

 Задачи исследования. Для достижения поставленной цели были сформулированы нижеследующие задачи:

 -установление спектроскопических характеристик производных триазолов в ассоциированном состоянии при изменении их электронной и геометрической структуры путем введения заместителей в азольные кольца;
- **-исследование** процессов самоассоциации и образования Н-комплексов на основе межмолекулярных водородных связей между производными триазолов;
- -производными триазолов,
 -проведение квантово-химических расчётов геометрических параметров молекулярной структуры (длин связей, величин валентных и двухгранных углов) и колебательных спектров производных триазолов для интерпретации экспериментальных ИК-спектров;
 -исследование влияния заместителей разной природы в моле-
- -исследование влияния заместителеи разнои природы в молекулярных циклах производных триазолов на их донорноакцепторные свойства по полосам поглощения N-H-групп;
 -проведение сравнительного анализа донорной и акцепторной способностей гетероциклических соединений различных производных триазолов по данным ИК-спектроскопии.
 -разработка методики определения электростатического и ковалентного вкладов при образовании H-комплексов.

- -выявлены вклады электростатической и ковалентной составляющих.

Научная новизна работы заключается в том, что впервые:

-установлено низкочастотное смещение полосы поглощения N-H- групп при введении в пиррольный цикл производных триазолов различных структурных элементов, в результате которого про-исходит изменение их донороно-акцепторных способностей;

-показано, что изменения спектральных свойств N-H-групп связаны с изменением электронной плотности групп, образующих H-связь;

-предложен механизм, объясняющий изменение донорноакцепторных свойств родственных гетероциклических соединений производных триазолов при введении в молекулярный цикл новых структурных элементов, заключающийся в том, что введение заместителей оказывает индукционное и мезомерное влияние на исходную равновесную электронную конфигурацию N-H- групп соединения;

-обнаружено спектральное проявление образования ассоциаций различного состава и строения между молекулами производных триазола, обусловленных межмолекулярными водородными связями;

-произведен квантово- химический расчёт молекулярной структуры, зарядов на атомах, геометрических параметров и ИКспектров поглощения производных триазолов;
-исследовано влияние образования водородных связей на па-

-исследовано влияние образования водородных связей на параметры полос поглощения валентных колебаний NH-групп производных триазола;

-показано, что изменение исходного электронного и геометрического строений молекул производных триазола при введении новых структурных элементов в азольное кольцо оказывает поляризационное индукционное влияние на равновесную электронную конфигурацию NH-групп и, соответственно, на их донорноакцепторную способность;

-предложена методика определения локализации активного протоноакцепторного центра в молекулах производных триазола при образовании Н-комплексов с использованием методов ИКспектроскопии и квантовой химии;

-выявлены вклады электростатической и ковалентной составляющих в образовании Н-комплексов молекулами 1,2,3-бензотриазола.

Выносимые на защиту положения:

- -наблюдение низкочастотного смещения полосы поглощения N-H-групп производных триазолов при введении в азольные циклы новых структурных элементов, приводящее к изменению донорноакцепторной способности соединения;
- -образование комплексов производными триазолов различно-го строения посредством межмолекулярной Н-связи; -установление зависимости спектроскопических свойств и донорно-акцепторной способности NH-групп производных триазолов от природы вводимых структурных элементов;
 -квантово-химические расчёты молекулярных структур, за-
- рядов на атомах и ИК-спектров поглощения производных триазолов;
- -наблюдение поляризационно-индукционного влияния вводимых структурных элементов на равновесную электронную конфигурацию NH-групп производных триазолов, приводящего к изменению их спектроскопических, протонодонорных и протоноакцепторных свойств;
- -выявление электростатического и ковалентного вкладов при образовании Н-комплексов.

ооразовании Н-комплексов.

Теоретическая и практическая значимость работы заключается в том, что результаты по спектральным свойствам, донорноакцепторной способности родственных гетероциклических соединений производных триазола и предложенный механизм образования межмолекулярных водородных связей в конденсированном состоянии позволяют расширить сферу использования спектроскопических свойств связей этого типа в молекулярной спектроскопии и молекулярном спектральном анализе, могут способствовать более углублённому представлению электронного строения и физикохимической природы Н-связей химической природы Н-связей.

С практической точки зрения результаты по эффективности комплексообразования производных триазолов можно использовать в различных технологических процессах с участием гетероциклических соединений, в частности, в фармакологии, медицине, парфюмерии, химической технологии, производстве красителей и синтезе биологически активных веществ.

Степень достоверности и апробация результатов. Достоверность результатов подтверждается использованием стандартных методик, калиброванной измерительной аппаратуры, надёжной воспроизводимостью результатов при многократном измерении большого количества объектов, хорошим согласием результатов с данными других авторов.

Личный вклад автора является определяющим в постановке задач исследования, поиске и анализе литературных данных, подготовке объектов исследования, проведении экспериментов и теоретических расчётов, обработке результатов и их обсуждении, подготовке материалов к публикации.

Апробация работы. Основные результаты работы были доложены в на: республиканской конференции «Современные проблемы жены в на: республиканской конференции «Современные проблемы физики конденсированного состояния» (Душанбе, 2015); республиканской научной конференции «Современные проблемы физики конденсированного состояния», посвященной 60-летию научнопедагогической деятельности заслуженного работника Республики Таджикистан, доктора физ.-мат. наук, профессора Туйчиева III. и 60-летию со дня образования кафедры физики твёрдого тела Таджикского национального университета (Душанбе, 2015); XXVIII симпозиуме «Современная химическая физика» (Туапсе, 2016); международной конференции «Актуальные вопросы современной физики», посвященной 80-летию профессора Нарзиева Б.Н. (Душанбе, 2018); VI международной конференции «Современные проблемы физики», посвященной 110-летию академика С.У.Умарова и 90-летию академика А.А.Адхамова (Душанбе, 2018); Russian-Japanese Conference Chemical Physics of Molecules and Polyfunctional Materials. October 30-31(2018, Orenburg, Russian Federation); международной научнопрактической конференции «Образование и наука в XXI веке: соврепрактической конференции «Образование и наука в XXI веке: современные тенденции и перспективы развития», посвященной 70-й годовщине со дня образования Таджикского национального университета (Душанбе, 2018); международном симпозиуме «Современная химическая физика» (Туапсе, 2020); республиканской научнохимическая физика» (туапсе, 2020); республиканской научно-практической конференции «Современные проблемы физики кон-денсированного состояния и ядерной физики» (Душанбе, 2020); международной научно практической конференции, посвященной 30-летию независимости Республики Таджикистан и 25-летию РТСУ (Душанбе, 15-16 октября, 2021); всероссийской научной конферен-ции с международным участием «Современные проблемы органической химии» (Новосибирск, 2021).

Публикации. Основное содержание работы опубликовано в 7 статьях в рецензируемых журналах из Перечня ВАК РФ, 16 тезисов в материалах республиканских и международных конференций.

в материалах республиканских и международных конференций.

Структура диссертации. Диссертационная работа изложена на 100 страницах машинописного текста, состоит из введения, 4 глав, выводов и списка цитируемой литературы из 130 наименований, 12 таблиц и 26 рисунков.

Соответствие паспорту научной специальности. Диссертация соответствует паспорту 1.3.8-физика конденсированного состояния по следующим пунктам паспорта специальности: по п. 2. Теоретическое и экспериментальное исследование физических свойств упорядоченных и неупорядоченных неорганических и органических систем, включая классические и квантовые жидкости, стекла различной природы, дисперсные, и квантовые системы; п.5. Разработка математических моделей построения фазовых диаграмм состояния и прогнозирование изменения физических свойств конденсированных веществ в зависимости от внешних условий их нахождения.

Ключевые слова: гетероциклические соединения, ИК-спектр, триазол, квантово-химический расчёт, протоноакцепторная и протонодонорная способности, индукционный и мезомерный эффекты, электростатический и ковалентный вклады.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении обоснована актуальность темы, сформулированы цель и задачи исследования, дана характеристика объектов и использованных методик исследования, отражены научная новизна результатов и выносимые на защиту положения, обоснованы достоверность полученных результатов и личный вклад автора, показана научно-практическая значимость результатов, приведены сведения об апробации работы.

В первой главе приводится обзор литературы, посвященный теоретическому и экспериментальному исследованию строения, физико-химических и спектральных свойств гетероциклических соединений ряда азолов. На основании анализа имеющихся данных обосновывается актуальность темы и необходимость проведения исследований по выбранному направлению.

Во второй главе описывается методика исследования ИКспектроскопических свойств гетероциклических соединений азольного ряда в твердом кристаллическом состоянии и в растворах. Описываются способы регистрации и обработки инфракрасных спектров поглощения, выбор чувствительных для анализа полос поглощения и определение их спектроскопических характеристик. В частности приводятся вычисленные частоты нормальных колебаний ИК—спектров гетероциклов. Также даётся описание методики квантово-химического расчета молекулярных структур.

тодики квантово-химического расчета молекулярных структур.

В трепьей главе приводятся основные данные о спектральных характеристиках ИК-полос поглощения гетероциклов и их изменении при введении в цикл структурных элементов различной природы. Из анализа параметров аналитических полос, прежде всего, полосы валентных колебаний N-H- групп (положение, интенсивность и полуширина) и их изменения в зависимости от электронной и геометрической структуры соединений, делаются заключения о донорно-акцепторных свойствах молекул производных триазолов.

На рис. 1 в качестве примера представлены молекулярные структуры и заряды на атомах молекул 1,2,4-триазола (a) и 1,2,3-бензотриазола (δ), рассчитанные методом функционала электронной плотности B3LYP/6–31++ G (d, p) с использованием комплекса программ Gaussian.

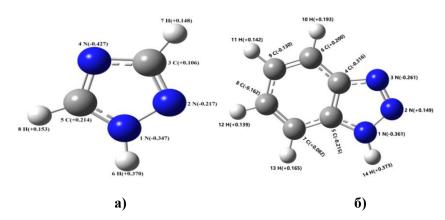


Рис.1. Молекулярная структура и заряды на атомах молекул: a - 1,2,4-триазола; δ -1,2,3-бензотриазола.

При известных данных о молекулярной структуре и наборе силовых постоянных можно рассчитать частоты всех нормальных колебаний любого соединения.

Теоретический расчет ИК-спектров выполнен в рамках теории колебательных спектров сложных молекул с применением созданной на её основе комплексной программы LEV-100, использующей метод фрагментов. На основе вычисленных спектральных параметров нами выполнено полное отнесение экспериментальных полос поглощения и дана интерпретация всех фундаментальных колебаний

На рис. 2 в качестве примера приведены экспериментальный и теоретический ИК-спектры 1,2,4-триазола в области частот $4000-500 \text{ cm}^{-1}$.

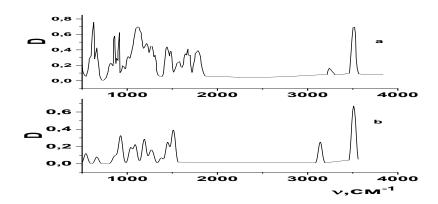


Рис. 2. Экспериментальный (a) и теоретический (b) ИК-спектры 1,2,4-триазола.

Как видно из рис. 2, расчётный ИК-спектр удовлетворительно описывает экспериментальный спектр 1,2,4-триазола: значения максимумов полос поглощения в экспериментальных и теоретических спектрах для большинства полос достаточно близки. Однако следует отметить, что интенсивности некоторых полос, в частности, полос 3141, 883 и 842 см⁻¹, значительно разнятся.

В данной главе также приведены результаты исследования влияния изменения электронной и геометрической структур на эф-

фективность образования H-связи производных триазола в твёрдой фазе. Особое внимание было уделено анализу спектров валентных колебаний связей N-H, которые надёжно регистрируются и чувствительны к изменению структуры молекулы. Измерения спектров проводились для твёрдых образцов в виде таблеток с KBr.

На рис. 3 представлены ИК-спектры поглощения исследованных соединений в твёрдом состоянии (1 - 1,2,3-бензотриазол, 2 - 1,2,4-триазол, 3 - 1,2,4-триазол-тиол-5, 4 - 3-метил-1,2,4-триазол-тиол-5) в диапазонах частот 3500-2000 см⁻¹ (a) и 1700-400 см⁻¹ (б).

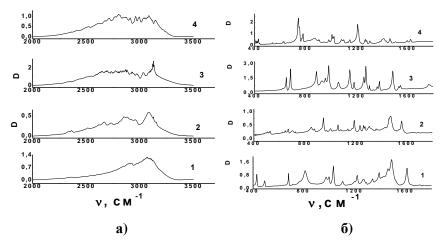


Рис. 3. ИК-спектры поглощения производных триазола в диапазонах частот 3500-2000 см $^{-1}$ (a) и 1700-400 см $^{-1}$ (δ): 1 - 3-метил-1,2,4-триазол-тиол-5, 2 - 1,2,4-триазол-тиол-5, 3 - 1,2,4-триазол, 4 - 1,2,3-бензотриазол.

Как видно, полосы поглощения в соединениях 3-метил-1,2,4-триазол-тиол-5, 1,2,4-триазол-тиол-5, 1,2,4-триазол и 1,2,3-бензотриазол в области $2000-3600~{\rm cm}^{-1}$ являются очень широкими и сложно структурированными.

Сдвиг положения максимума полосы поглощения колебаний N-H-связей в область низких частот и её уширение является надёжно установленным фактом образования H-связи. Также надёжно установлено, что больший низкочастотный сдвиг соответствует более сильной H-связи. Таким образом, проявление в спектрах моле-

кул твердофазных производных триазола колебаний N-H связей в более низкочастотной, по сравнению с жидкофазными мономерным состоянием ($\nu_{NH}\sim3500~{\rm cm}^{-1}$), свидетельствует о том, что в твёрдом состоянии молекулы производных триазола связаны между собой водородными связями, т.е. находятся в форме ассоциатов.

Образование ассоциатов различного порядка может быть связано с наличием в ряду соединений 3-метил-1,2,4-триазол-тиол-5, 1,2,4-триазол-тиол-5, 1,2,4-триазол открытых атомов азота в положении 2 или 4 (рис. 4.).

Рис. 4. Примерная схема образования H-комплексов для соединений 1 – 3.

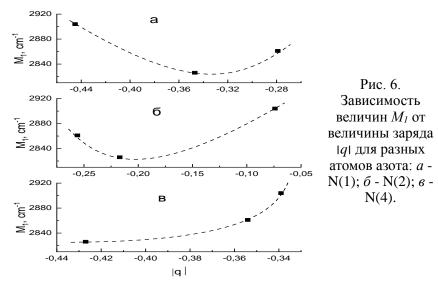
В четвертой главе приводятся результаты исследований по спектроскопическому проявлению влияния изменения электронной и геометрической структур молекул на протонодонорную и протоноакцепторную способности исследованных соединений.

На рис. 5 представлены ИК-спектры поглощения родственных гетероциклических соединений азольного ряда (1 - пиррол, 2 - 1,2,3-бензотриазол, 3 - 1,2,4-триазол) в области валентных колебаний N-H- групп свободных молекул.

Рис. 5. Форма и положение полосы поглощения валентного колебания группы (v_{NHcв}) свободных молекул гетероциклических соединений в среде CCl₄:

1 - пиррол,
2- 1,2,3-бензотриазол,
3- 1,2,4-триазол.

Видно, что полоса, обусловленная валентными колебаниями N-H-групп свободных молекул, является узкой, симметричной и одиночной, что позволяет данное колебание использовать в качестве характеристического при исследовании образования H-связей.


Присоединение к пиррольному циклу двух атомов азота в положениях 2 и 3 и бензольного кольца (соединение 2) приводит к смещению частоты колебания группы N-H свободных молекул в низкочастотную область спектра на 35 см $^{-1}$ и проявляется при 3462 см $^{-1}$. При введении двух атомов азота в положения 2 и 4 (соединение 3) частота колебаний $v_{\rm o}$ смещается в низкочастотную область спектра на 75 см $^{-1}$ и наблюдается при 3422 см $^{-1}$.

Уменьшение частоты колебаний свободных молекул происходит за счет индукционного и мезомерного влияния введенных структурных фрагментов на равновесную электронную конфигурацию групп N-H. При этом происходит смещение электронного облака группы N-H в сторону введенных заместителей, в частности, общая электронная пара связи N-H смещается в сторону гетероатома азота, вследствие чего уменьшается силовая константа, и, следовательно, частота колебаний. Такое изменение электронной плотности на атоме водорода приводит к увеличению донорной способности данного соединения.

В данной главе также приведены результаты исследования корреляции между величинами отрицательных зарядов в азольном кольце молекул 1,2,4-триазола, 1,2,4-триазол-тиола-5 и 3-метил-1,2,4-триазол-тиола-5 и положением максимумов N(1)-Н полос. На рис. 6 a-b представлены зависимости величин M_1 (центр тяжести спектра, первый момент) от величины заряда |q| для разных атомов азота. Как видно, имеет место монотонное уменьшение величины M_1 (увеличение силы H-связи) с увеличением заряда |q| только для атома N(4) (рис.6.b). Для других атомов азота этих производных 1,2,4-триазола такая корреляция отсутствует (рис.6.b0.

Наличие корреляции между величиной отрицательного заряда на атоме N(4) в азольном кольце и величиной сдвига N(1)-Н полосы позволяет сделать заключение о том, что связь N(1)-Н в производных 1,2,4-триазола преимущественно образуется с атомом N(4) (N(1)- $H\cdots N(4)$). Заключение относительно образования H-связи между атомами водорода N(1)-Н в производных 1,2,4-триазола и

атомом N(4) соседней молекулы подтверждается квантово- химическими расчётами.

На рис. 7 показана оптимальная молекулярная структура водородно-связанного комплекса 1,2,4-триазола.

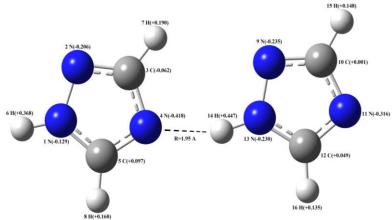


Рис. 7. Молекулярная структура димера 1,2,4-триазола.

Видно, что наибольший положительный заряд на атомах водорода группы N(1)-H (+0,447) и наибольший отрицательный заряд на атоме N(4) (-0,418) соседней молекулы. Кроме того, расстояние между этими атомами является наименьшим и составляет R=1,95Å. Поэтому электростатическое взаимодействие с этими атомами сильнее, чем взаимодействие между другими атомами. В связи с этим, водородная связь, по-видимому, образуется между водородом N(1)-H и атомом N(4) соседней молекулы 1,2,4-триазола.

Таким образом, на основании анализа результатов ИК-спектроскопии и квантово-химических расчётов можно сделать заключение, что для молекул 1,2,4-триазола, 1,2,4-триазол-тиола-5 и 3-метил-1,2,4-триазол-тиола-5 в поликристаллическом состоянии образование H-связи преимущественно имеет место между связью N(1)-H и атомом N(4) соседней молекулы.

В главе IV также приводятся результаты исследования образования Н-комплексов между молекулами 1,2,3-бензотриазола и молекулами акцептора протона. Интерес к изучению спектроскопических свойств молекулы 1,2,3-бензотриазола связан с тем, что, вопервых, отсутствует какая-либо информация о протонодонорной способности этой молекулы, во-вторых, в последнее время интерес к свойствам производных 1,2,3-бензотриазола заметно возрос со стороны фармакологов.

В качестве акцепторов протона нами были выбраны ацетонитрил, ацетон, диоксан и диметилформамид (ДМФА). В качестве нейтрального растворителя использовали четыреххлористый углерод CCl₄. В растворах образуются H-комплексы типа N-H...R, где R – $C \equiv N$, C=O группы.

На рис. 8 приведены ИК-спектры Н-комплексов 1,2,3-бензотриазола с разными молекулами в области валентных колебаний NH-групп в среде CCl₄.

В разбавленном растворе 1,2,3-бензотриазола в ССІ₄ наблюдается симметричная полоса поглощения с частотой 3462см⁻¹, обусловленная валентными колебаниями NH-групп. При добавлении в раствор молекул ацетонитрила (б), ацетона (в), диоксана (г), ДМФА (д) полоса поглощения изменяется и проявляются все спектральные признаки образования H-комплексов посредством водородной связи между N-H группой 1,2,3-бензотриазола и атомами O(N) молекул ацетонитрила, ацетона, диоксана и ДМФА.

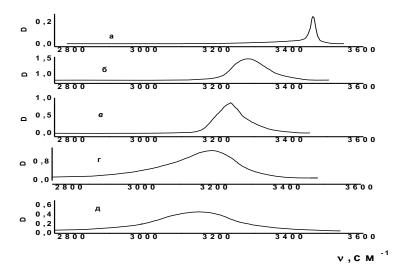


Рис. 8. Экспериментальные ИК-спектры поглощения мономера 1,2,3-бензотриазола в среде CCl_4 ($C_{1,2,3-бенз}=0,0047$ моль/л) (a) и его коплексов с ацетонитрилом (δ), ацетоном (ϵ), диоксаном (ϵ), ДМФА (δ) в области валентных N–H колебаний ($C_{akuen}=0,46$ моль/л).

Смещение полосы поглощения группы N-H мономера 1,2,3-бензотриазола при образовании H-комплексов подтверждается результатами квантово-химических расчетов. На рис. 9 (a-d) представлены расчётные ИК-спектры поглощения мономера 1,2,3-бензотриазола (a) и его H-комплексов с ацетонитрилом (b), ацетоном (b), диоксаном (c) и ДМФА (d) в области валентных N-H колебаний.

Согласно расчетам, частота валентных колебаний NH- групп мономера 1,2,3-бензотриазола составляет 3461 см $^{-1}$ (рис. 9 a). При образовании водородной связи с молекулами акцепторов протона это полоса смещается в область низких частот (рис. 9 δ , ϵ , ϵ , δ). Для минимизации расхождения рассчитанных и измеренных значений частот валентных колебаний использован метод масштабирования. Поскольку в области поглощения комплексов отсутствуют дополнительные максимумы, можно полагать, что H-связь образуется, в основном, посредством групп NH. Это совпадает с оптимальной молекулярной структурой водородо-связанного комплекса 1,2,3-

бензотриазола с протоноакцепторными молекулами, рассчитанной квантово-химическим методом.

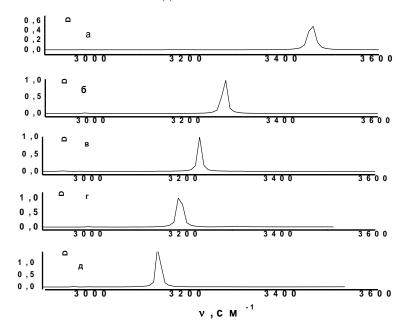


Рис. 9. Расчётные ИК-спектры поглощения мономера 1,2,3-бензотриазола (a), его комплексов с ацетонитрилом (δ), ацетоном (ϵ), ДМФА (δ).

На рис. 10 в качестве примера представлены расчётные молекулярные структуры водородо-связанных комплексов 1,2,3-бензотриазола с ДМФА.

Из рис.10., видно, что наибольший положительной заряд на атомах водорода группы N(17)-H(26)(+0.517) молекула 1,2,3-бензотриазола и наибольший отрицательной заряд на атоме O(1) (-0.552) соседней молекулы. Кроме того, расстояния между этими атомами является наименьшим и составляет R=1,82 Å. Поэтому электростатическое взаимодействие между этими атомами сильнее, чем взаимодействие между другими атомами. В связи с этим, водородная связь, по-видимому, образуется между водородом N(17)-H(26)-группы и атомами O(1) соседних молекул ДМФА.

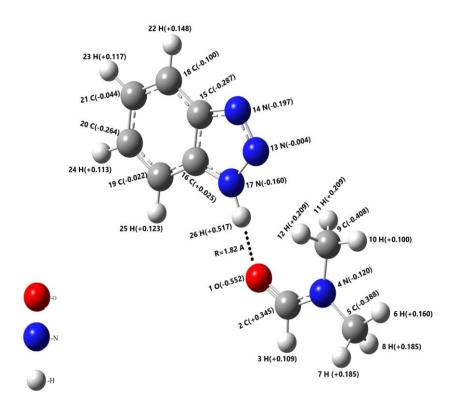


Рис. 10. Расчётные молекулярные структуры водородо-связанных комплексов 1,2,3-бензотриазола с ДМФА

Спектральные и энергетические параметры Н-комплексов 1,2,3-бензотриазола в растворах с протоноакцепторными растворителями различной силы и природы в нейтральной среде CCl₄ приведены в таблице 1.

На рис. 11 показана зависимость сдвига полосы NH-колебаний молекул 1,2,3-бензотриазола от величины кулоновского взаимодействия между атомом водорода молекулы 1,2,3-бензотриазола и атомом B молекулы акцептора протона при образовании H-комплекса. Величина энергии кулоновского взаимодействия $|E|_{\text{кул}}$ рассчитывали по формуле $|E|_{\text{кул}} = |(q_1 \cdot q_2)/r|$, где q_1 , q_2 - величины зарядов на атомах водорода в молекуле 1,2,3-бензотриазола и на атоме B молекулы ак-

цептора протона в H-комплексе, соответственно, r — величина оптимального расстояния между молекулами в H-комплексе.

Таблица1.

Спектральные (Δv , см⁻¹) и энергетические характеристики (ΔH , кДж/моль) комплексов 1,2,3-бензотриазола с ацетонитрилом (a), ацетоном (δ), диоксаном (ϵ), ДМФА (ϵ).

№		ν _{эксп.,} см ⁻¹	$\frac{\Delta \nu_{\text{эксп.}}}{\text{cm}^{-1}}$	ν _{расч} см ⁻¹	$\Delta \nu_{pac^{_{^{\!$	-ΔН _{эксп.} кДж/моль	- $\Delta H_{\text{расч}}$. кДж/моль	Тип связи
1	CCl ₄	3462	ı	3461	ı	-	1	-
2	а	3283	179	3280	181	16,18	16,30	$NHN \equiv C$
3	б	3234	228	3231	230	18,78	18,88	NHO=C
4	в	3190	272	3188	273	20,84	20,88	NHO-C
5	г	3144	318	3142	319	22,80	22,84	NHO=C

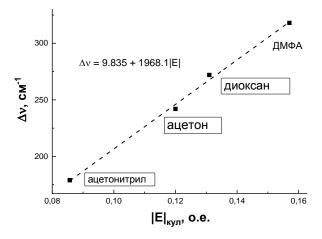


Рис.11. Зависимость сдвига полосы NH-колебаний в молекуле 1,2,3-бензотриазола от энергии кулоновского взаимодействия между атомом водорода молекулы 1,2,3-бензотриазола и атомом B молекулы акцептора протона при образовании H-комплекса.

Как видно из рис. 11., имеется корреляция между величинами $\Delta \nu$ и |E|: с увеличением $|E|_{\text{кул}}$ величина $\Delta \nu$ линейно увеличивается. Связь между этими величинами удовлетворительно описывается линей-

ной зависимостью $\Delta v = 9,835 + 1968.1|E|_{\text{кул}}$. Установленная корреляция позволяет сделать заключение, что природа H-связи в H-комплексах молекулы 1,2,3-бензотриазола с протоноакцепторными молекулами имеет преимущественно электростатическую природу.

Установленная линейная корреляция позволяет сделать заключение, что природа Н-связи в Н-комплексах молекул 1,2,3-бензотриазола с протоноакцепторными молекулами имеет преимущественно электростатическую природу.

Из полученных данных следует, что для оптимальной геометрической структуры H-комплекса, которая образуется в результате взаимодействия молекул 1,2,3-бензотриазола с донорноакцепторными молекулами, необходимо такое расположение взаимодействующих молекул, чтобы их активные центры (N-H $^{\delta+}$ ····A $^{\delta-}$) непосредственно формирующие H-связи, имели наибольшее электростатическое (кулоновское) взаимодействие, которое определяется оптимальным пространственным расположением взаимодействующих молекул и величиной зарядов на взаимодействующих атомах.

Основные результаты и выводы

- 1. Изменение электронной и геометрической структуры молекул гетероциклических соединений производных триазола при введении заместителей разной природы приводит к изменению их спектральных характеристик.
- 2. Удовлетворительное совпадение расчётных частот максимумов полос поглощения производных триазола с экспериментальными частотами позволяет считать, что выбранное силовое поле и электрооптические параметры могут быть использованы для расчёта колебательных спектров и интерпретации ИК-спектров других гетероциклических соединений.
- 3.Изменение электронной и геометрической структуры гетероциклических соединений при введении в цикл новых структурных элементов приводит к изменению их донорно-акцепторных свойств. Наблюдаемые изменения спектроскопических и донорно-акцепторных свойств гетероциклических соединений связаны с индукционным и мезомерным влиянием вводимых структурных

фрагментов на равновесную электронную конфигурацию функциональных N-H- групп.

- 4. Для молекул 1,2,4-триазола, 1,2,4-триазол-тиола-5 и 3-метил-1,2,4-триазол-тиола-5 в поликристаллическом состоянии Н-связи преимущественно образуются между атомами H связи N(1)-H и атомом N(4) соседней молекулы.
- 5.В нейтральных растворах 1,2,3-бензотриазола с протоноакцепторными молекулами образуются Н-комплексы типа N-H...BR, (R это C=N, C=O) между молекулами гетероциклов и протоноакцепторными молекулами. Образование Н-комплексов приводит к изменению положения и формы полосы $\nu_{\rm NH}$ 1,2,3-бензотриазола. Н-комплексы имеют донорно-акцепторную природу. Их строение, спектральные и энергетические свойства зависят от величины силы кулоновского взаимодействия структурных фрагментов, образующих Н-комплексы.
- 6. Установлено, что при образовании Н-комплексов молекулы 1,2,3- бензотриазола с протоноакцепторными молекулами определяющий вклад в образование Н-комплексов вносит электростатическая составляющая.

Список публикаций по теме диссертации

- 1. Муллоев Н.У., Ходиев М.Х., Исломов З.З., Лаврик Н.Л. Влияние структуры молекул производных триазола на эффективность образования межмолекулярной Н-связи // Журнал структурной химии, 2020.-Т.61.-№2.-С. 246-251.
- 2. Абдулов Х.Ш., Муллоев Н.У., Табаров С.Х., Ходиев М.Х. Квантово-химическое определение молекулярной структуры 1,2,4-триазола и расчет его инфракрасного спектра // Журнал структурной химии, 2020.-Т.61.-№4.-С. 540-544.
- 3. Муллоев Н.У., Ходиев М.Х., Файзиева М.Р., Исломов З.З., Файзиева М.Р. Протонодонорные способности гетеро циклических соединений азольного ряда при изменении их электронного и геометрического строения // Вестник ТНУ. Серия естественных наук, 2019.- №4.-С.82-86.
- 4. Муллоев Н.У., Ходиев М.Х. Самоассоциация и ИК-спектры некоторых производных триазолов в твердом состоянии // Доклады АН Республики Таджикистан, 2018.-Т.61.-№7-8.-С.645-650.

- 5. Муллоев Н.У., Ходиев М.Х. Межмолекулярные взаимодействия и акцепторные свойства некоторых азотсодержащих гетеросоединений по ИК-поло-сам поглощения групп NH-ассоциированных молекул // Вестник ТНУ. Серия естественных наук, 2018.-№4.-С.169-175.
- 6. Муллоев Н.У, М.Файзиева, М.Нуруллоев, З.З.Исломов, Юсупова Дж., Ходиев М.Х. Влияние структурных факторов на протоноакцепторные способности гетероциклических соединений // Доклады АН Республики Таджикистан, 2016.-Т.59.-№3-4.-С.126-132.
- 7. Муллоев Н.У., Ходиев М.Х., Лаврик Н.Л. ИКспектроскопическое исследование и ab initio расчеты образования Н-комплексов 1,2,3-бензотриазола с протоно-акцепторными молекулами. // Всероссийская научная конференция с международным участием «Современные проблемы органической химии»: Сборник тезисов. Новосибирск, 2021.-С.86.
- 8. Муллоев Н.У., Ходиев М.Х., Маджидов Н.А., Лаврик Н.Л. Определение центра связывания в структуре молекул производных триазола при образовании межмолекулярной Н-связи методами ИК спектроскопии и квантовой химии. // Всероссийская научная конференция с международным участием «Современные проблемы органической химии»: Сборник тезисов, Новосибирск, 2021.-С.87.
- 9. Муллоев Н.У., Лаврик Н.Л, Ходиев М.Х. Изучение донорноакцепторных взаимодействий производных 1,2,4-триазола методом ИК спектроскопии. // XXXI Симпозиум «Современная химическая физика». Туапсе, 15-22 сентября, 2019. -С.205.
- 10. Mulloev N.U., Lavrik N.L., Khodiev M., Islomov Z.Z. The study of the effect of the introduction of substituents into the 1,2,4-triazole molecule by IR spectroscopy. // Chemical Physics of Molecules and Polyfunctional Materials. Russian-Japanese Conference: proceedings. Orenburg, 2018.-PP.62-64.