На правах рукописи

УДК 534.8, 621.3.082.4

Абдурахмонов Абдурахмон Абдулкадимович

ОСОБЕННОСТИ ФОРМИРОВАНИЯ СТАЦИОНАРНОГО ПОЛЯ ТЕМПЕРАТУРЫ И ГЕНЕРАЦИИ ТЕПЛОВЫХ ВОЛН В ПЛЕНКАХ ДИЭЛЕКТРИКОВ В ПОЛЕ НЕПРЕРЫВНОГО ГАРМОНИЧЕСКИ МОДУЛИРОВАННОГО ПУЧКА ИОНОВ

Специальность: 1.3.8-физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Душанбе-2025

Работа выполнена в научно-исследовательской лаборатории физики конденсированных сред им. профессора Б.Н. Нарзуллаева Научно-исследовательского института Таджикского национального университета.

Научный	Салихов Тагаймурод Хаитович – член-корр. НАНТ,						
руководитель:	доктор физико-математических наук, профессор, ГН						
	НИИ Таджикского национального университета.						
Официальные	Ивлиев Андрей Дмитриевич – доктор физико-						
оппоненты:	математи-ческих наук, профессор кафедры математиче-						
	ских и естественнонаучных дисциплин ФГАОУ ВО						
	«Российский государственный профессионально педаго-						
	гический университет» (г. Екатеринбург, Россия);						
	Гафурзода Халимджон Муроди – кандидат физико-						
	математических наук, доцент кафедры общей физики						
	твердых тел Худжандского государственного универси-						
	тета имени академика Б. Гафурова (г. Худжанд, Таджи-						
	кистан).						
Ведущая	Российско-Таджикский (Славянский) университет						
организация:	(г. Душанбе, Таджикистан)						
Ведущая организация:	Гафурзода Халимджон Муроди – кандидат физико математических наук, доцент кафедры общей физики и твердых тел Худжандского государственного универси тета имени академика Б. Гафурова (г. Худжанд, Таджи кистан). Российско-Таджикский (Славянский) университет (г. Душанбе, Таджикистан)						

Защита состоится «18» марта 2025г. в 10:00 часов на заседании диссертационного совета 99.0.057.02 по защите докторских и кандидатских диссертации при Таджикском национальном университете по адресу: 734025, Республика Таджикистан, г. Душанбе, ул. Буни Хисорак, Студенческий городок, учебный корпус 16.

Отзывы направлять по адресу: 734025, Республика Таджикистан, г. Душанбе, проспект Рудаки, 17, ТНУ, диссертационный совет 99.0.057.02, E-mail: <u>tgnu@mail.ru</u>.

С диссертацией можно ознакомиться в научной библиотеке и на сайте Таджикского национального университета (<u>www.tnu.tj</u>).

Автореферат разослан «____»____ 2025 г.

Ученый секретарь объединённого диссертационного совета 99.0.057.02, кандидат физ.-мат. наук, СНС

Табаров С.Х.

ВВЕДЕНИЕ.

Актуальность темы. Очевидно, что современные методы технологии радиационного материаловедения позволяют получать материалы, необходимые для нужд современной науки и техники, включая нано - и микроэлектронику. Вместе с тем в процессе облучения исходного материала потоками заряженных частиц с различными энергиями и плотностью тока происходит целый ряд неравновесных процессов и возникает необходимость детального и всестороннего исследования механизмов развития этих процессов. Между тем, известно, что процесс передачи энергии потока заряженных частиц в образец сопровождается существенным нагревом её поверхностного слоя, а накопленная при этом тепловая энергия распространяется по всему объему образца по диффузионному закону. В этой связи особенности формирования стационарного и нестационарного температурного полей (ТП) при облучении непрерывным или другим видом импульса ионного пучка исследованы достаточно подробно [1-8]. Между тем, как было показано в [9,10], возможны случаи, когда падающий пучок ионов изменяется по гармоническому закону с частотой ω . Очевидно, что в этом случае в конденсированных средах возбуждаются тепловые волны (ТВ), особенности генерации и распространения которых достаточно полно изложены в обзорах [11,12] и монографии [13]. Подчеркнем, что в этом случае в среде наряду с линейной тепловой волной возбуждается и нелинейная. Тогда для изучения особенностей генерации этих волн становится важным учет температурной зависимости теплофизических параметров исследуемой среды, что принято называть тепловой нелинейностью (ТН) [14,15]. Отметим, что в [16-18] решены подобные задачи по фотоакустике и оказалось, что в этом случае в среде генерируются нелинейные колебания температуры, как на частоте ω , так и на удвоенной частоте (вторая гармоника). Следовательно, теоретическое исследование особенностей генерации линейной и нелинейной ТВ в пленках диэлектриков модулированным пучком ионов является весьма актуальной задачей.

Степень изученности проблемы, теоретико-методологическая основа исследования. Анализ существующих литературных данных показал, что к настоящему времени достаточно хорошо развита линейная теория генерации ТВ и отсутствуют какие-либо работы, посвященные генерации нелинейных ТВ модулированным пучком ионов. Также оказалось не исследованным влияние ТН на формирование стационарного ТП в пленках диэлектриков при облучении непрерывным пучком ионов.

Целью работы является исследование влияния тепловой нелинейности на формирование стационарного поля температуры, а также создание теории генерации линейных и нелинейных ТВ в пленках диэлектриков гармонически модулированным ионным пучком.

Для достижения поставленной цели были сформулированы следующие основные задачи:

-исследование особенностей формирования стационарного поля температуры в пленках диэлектриков на подложке и без нее, находящихся в воздухе с учетом ТН теплофизических величин и степени черноты образца при облучении непрерывным потоком ионов;

-создание теории генерации линейных и нелинейных ТВ в пленках диэлектриков гармонически модулированным ионным пучком;

-исследование особенностей генерации линейных и нелинейных ТВ в плёнке диэлектрика, прикреплённой на подложке в воздухе гармонически модулированным ионным пучком.

Научная новизна работы состоит в том, что для диэлектрических пленок на подложке и без нее впервые:

-исследовано влияние ТН теплофизических величин и степени черноты диэлектрических пленок на формирование стационарного ТП в поле непрерывного потока ионов;

-разработана теория генерации линейной и нелинейной ТВ в пленках диэлектриков гармонически модулированным потоком ионов, обусловленной ТН теплофизических величин и степени черноты образца;

-предложена теория возбуждения линейной и нелинейной ТВ в пленках диэлектриков на подложках гармонически модулированным потоком ионов, вызванного температурной зависимостью теплофизических величин и степени черноты образца.

Практическая значимость. Выражения для ТП в диэлектрических пленках позволяют определить пространственное распределения температуры этих систем при их облучении непрерывным потоком ионов. Предложенная теория генерации линейных и нелинейных ТВ в диэлектрических пленках позволяют определить теплофизические величины и степень черноты этих систем, а также их термические коэффициенты.

Выносимые на защиту положения:

-аналитические выражения для описания стационарного ТП в диэлектрических пленках на подложке и без неё, образующегося при облучении непрерывным потоком ионов;

-аналитические выражения для амплитуды и фазы линейной ТВ, возбуждаемой в пленках диэлектриков на подложке и без неё при облучении гармонически модулированным ионным пучком;

-аналитические выражения для амплитуды и фазы основной гармоники, возбуждаемой нелинейной ТВ в пленках диэлектриков на подложке и без неё при облучении гармонически модулированным ионным пучком;

-выражения, описывающие особенности генерации второй гармоники (ВГ) нелинейной ТВ в пленках диэлектриков на подложке и без неё при облучении гармонически модулированным ионным пучком.

Достоверность результатов обеспечивается корректностью исходных линейных и нелинейных уравнений теплопроводности для облучаемых и не облучаемых слоев диэлектрика и граничные условия к ним, а также использованием существующих методов их решения.

Основные результаты доложены на: 10-й межд. теплофизической школе «Теплофизические исследования и измерения при контроле качества вещества, материалов и изделий» (Душанбе, 2016); межд. конф. «Современные

проблемы физики конденсированного состояния» (Душанбе, 2017); межд. конф. «О применении дифференциальных уравнений в прикладных задачах» (Душанбе, 2021); симпозиуме физиков Таджикистана (Душанбе, 2021); межд. научно-практической конф. «Современные проблемы физики и химии полимеров» (Душанбе, 2023); межд. научно-практ. конф. VI межд. науч. конф. «Вопросы физической и координационной химии» (Душанбе, 2024); межд. научно-теорет. конф. «Развитие новых направлений в науке: современные состояние и перспективы» (Душанбе, 2024); IX межд. конф. «Современные проблемы физики» (Душанбе, 2024).

Личный вклад соискателя заключается в его непосредственном участии в поиске теоретического и экспериментального материала, формулировке математических моделей сформулированных задач и получении их решений, все численные расчеты выполнены лично соискателем.

Публикации. По материалам диссертации опубликовано 11 статей, 8 из которых в рецензируемых журналах из Перечня ВАК РФ, 8 тезисов докладов в материалах международных и республиканских конференций.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения и списка цитируемой литературы. Содержание работы изложено на 111 страницах, включая 29 рисунков и список литературы из 112 наименований.

Ключевые слова: диэлектрическая плёнка, ионный пучок, температурное поле, тепловая нелинейность, теплопроводность, тепловые волны.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулированы цель и основные задачи работы, показана научная новизна и перечислены основные положения, выносимые на защиту.

Первая глава является обзорной и состоит из четырех параграфов. В параграфе 1.1 выполнен анализ теплофизических аспектов взаимодействия пучка ионов с диэлектрическими материалами. Подробно изложены резуль-

таты, полученные для случая прямоугольной формы импульса ионов. Параграф 1.2 посвящен определению и описанию особенностей распространения ТВ в конденсированных средах. В параграфе 1.3 изложены особенности возбуждения и распространения ТВ волн прямоугольной формы в конденсированных средах. В параграфе 1.4 выполнен краткий анализ существующих работ по нелинейным ТВ.

Вторая глава посвящена теоретическому исследованию влияния ТН теплофизических величин и степени черноты на особенности формирования стационарного поля температуры в диэлектрических пленках на подложке и без неё при облучении непрерывным ионным пучком и состоит из четырех параграфов. В параграфе 2.1 теоретически исследовано Влияние ТН теплофизических величин и степени черноты на ТП диэлектриков в поле непрерывного пучка ионов для случая, когда:

1) облучение образца проводится в воздухе;

2) образец прикреплен на массивной подложке, вторая поверхность которой погружена в воду, а облучение проводится в вакууме;

3) образец находится на подложке и облучение проводится в воздухе;

4) образец находится на подложке и облучение проводится в вакууме.

Ниже приведем некоторые результаты.

Случай 1. Поскольку длина пробега ионов в образце диэлектрика $R \ll L$ (толщины), то при перпендикулярно падающем на поверхность потоке ионов возникает необходимость искусственного разделения образца на две части, для которых верна следующая система нелинейных уравнений тепло-проводности [3]:

$$\frac{d}{dx} \left[\kappa(T_1) \frac{dT_1'}{dx} \right] = -\frac{EJ}{RZe} \Theta(R - x), \qquad 0 < x < R, \qquad (1)$$

где J, Z, E - плотность тока пучка, заряд иона в единицах заряда электрона и начальная энергия ионов, соответственно, T'_i - приращение температуры в раз-

ных частях образца, $\Theta(R-x)$ - единичная функция Хэвисайда.

Температурную зависимость коэффициента теплопроводности $\kappa(T_1(x))$ примем в виде $\kappa(T_1') = \kappa^{(0)}(T_0)[1 + \delta_2 T_1'(x)]$, где $\kappa^{(0)}(T_0)$ - начальное значение, $\delta_2 = \frac{1}{\kappa^{(0)}(T_0)} \frac{\partial \kappa}{\partial T}$ - термический коэффициент этой величины, T_0 - начальная температура образца. Граничные условия, необходимые для решения системы (1)-(2) можно записать в следующем виде:

$$\begin{split} T_{1}'(R) &= T_{2}'(R) = W_{0}, \ \kappa^{(0)} \left(1 + \delta_{2} T_{1}'\right) \frac{\partial T_{1}'}{\partial x}\Big|_{x=0} = hU_{0} + A\sigma (U^{4} - T_{0}^{4})\Big|_{x=0} ,\\ \kappa(T_{1}) \frac{\partial T_{1}'}{\partial x}\Big|_{x=R} &= \kappa(T_{2}) \frac{\partial T_{2}'}{\partial x}\Big|_{x=R}, \ -\kappa^{(0)} \left(1 + \delta_{2} T_{2}'\right) \frac{\partial T_{2}'}{\partial x}\Big|_{x=L} = h\Theta_{0} + A\sigma (U_{1}^{4} - T_{0}^{4})\Big|_{x=L} . \end{split}$$

Здесь $U = U_0 + T_0$, $U_1 = \Theta_0 + T_0$ - установившиеся температуры облучаемой и тыловой поверхностей образца, соответственно, U_0 и Θ_0 - их приращения, W_0 - приращение температуры между границей облучаемой и не облучаемой слоёв образца. Величины *h* и *A* также являются температурнозависящими [19-22] и эту зависимость примем в виде $A = A^{(0)}(T_0)[1 + \delta_3 U_0]$, $h = h^{(0)}(T_0)[1 + \delta_4 U_0]$, где $\delta_3 = \frac{1}{A^{(0)}(T_0)} \frac{\partial A}{\partial T}$, $\delta_4 = \frac{1}{h^{(0)}(T_0)} \frac{\partial h}{\partial T}$ - термические коэффициенты этих величин. Решая систему (1)-(2) для безразмерных функций $g_1(x) = \delta_2 T_1'(x)$ и $g_2(x) = \delta_2 T_2'(x)$, получим следующие выражения:

$$g_1(x) = -1 + \{1 + \delta_2 [(1 - \frac{x}{R})(2U_0(1 + 0.5\delta_2 U_0) + \frac{EJx}{Zek^{(0)}}) + 2W_0(1 + 0.5\delta_2 W_0)\frac{x}{R}]\}^{1/2}, \quad (3)$$

$$g_{2}(x) = -1 + \left\{1 + \frac{2\delta_{2}}{L - R} \left[\Theta_{0}(1 + 0.5\delta_{2}\Theta_{0})(x - R) + W_{0}(1 + 0.5\delta_{2}W_{0})(L - x)\right]\right\}^{1/2} .$$
(4)

Граничные условия позволили получить следующую систему нелинейных алгебраических уравнений для определения величин U_0, W_0, Θ_0 :

$$\delta_2(U_0^2 - W_0^2) + 2(U_0 - W_0) - \frac{EJR}{Zek^{(0)}} + \frac{2h^{(0)}R}{k^{(0)}}U_0(1 + \delta_4 U_0) + \frac{2A^{(0)}R\sigma}{k^{(0)}}(1 + \delta_3 U_0)(U^4 - T_0^4) = 0, \quad (5)$$

$$\delta_2 U_0^2 + 2U_0 - (\delta_2 W_0^2 + 2W_0)(1 + \frac{R}{L - R}) + (\frac{R}{L - R})(\delta_2 \Theta_0^2 + 2\Theta_0) + \frac{EJR}{Zek^{(0)}} = 0,$$
(6)

$$\delta_2(\Theta_0^2 - W_0^2) + 2(\Theta_0 - W_0) + \frac{2(L - R)A^{(0)}\sigma}{k^{(0)}}(1 + \delta_3\Theta_0)[(T_0 + \Theta_0)^4 - T_0^4)] + \frac{2h^{(0)}(L - R)}{k^{(0)}}(1 + \delta_4\Theta_0)\Theta_0 = 0.$$
(7)

Численные значения величин $k^{(0)}, h^{(0)}, A^{(0)}$, их термических коэффициентов для некоторых диэлектриков; ввиду отсутствия надежных данных по $h^{(0)}$ и δ_4 для Al₂O₃, SiO₂, TiO₂ и ZrO₂ нами приняты значения для MgO).

Вещес-	$k^{(0)}$,	$\delta_2 \cdot 10^3$, K ⁻¹	$A^{(0)}$	$\delta_3.10^3, \text{K}^{-1}$	$h^{(0)}$,	$\delta_4.10^3$,K ⁻¹
тво	Вт/м·	(диапазон		(диапазон	BT/M^2 ·	(диапазон
	Κ	температур)		температур)	Κ	температур)
MgO	58	-0.92	0.72	- 0.59	8.40	7.14
	[20]	(300-1100)	[20]	(300-1100) K	[23]	(300-1100)K
		К				
Al ₂ O ₃	40	-0.86	0.79	- 0.411	8.40	7.14
(сапфир)	[26]	(300-1000)К	[24]	(400-1600) K	[23]	(300-1100)К
SiO ₂	13	-0,59	0.72	- 0,55	8.40	7.14
	[19]	(400-1300)K	[20]	(573-1173) К	[23]	(300-1100)К
TiO ₂	18,85	-0.56	0.82	0.108	8.40	7.14
	[19]	(400-1500)K	[20]	(400-1300) K	[23]	(300-1100)K
ZrO ₂	1.7	0.16	0.8	- 0.63	8.40	7.14
	[19]	(400-1500)K	[20]	(300 – 100)K	[23]	(300-1100)K

Путем численного решения системы (5)-(7) можно определить зависимости величин U_0 , W_0 и Θ_0 от параметров падающего потока ионов. Используя данные, приведенные в табл. 1, нами выполнено численное решение системы (5)-(7) для MgO и спеченных оксидов Al_2O_3 , TiO_2 , результат которого показан на рис. 1 *a* и *б*. Отметим, что из-за того, что R << L, отличие величин U_0 и W_0 составляет значительно меньше одного градуса и становится неразличимым. Различие между U_0 и Θ_0 при малых значениях интенсивности также весьма незначительно, но с ростом интенсивности падающего потока эта разность несколько возрастает и составляет несколько градусов.

Рис. 1. Зависимости приращения температуры облучаемой поверхности от величины $I = \varepsilon J / RZe$ для: *a*- MgO при $\delta_2 = \delta_3 = \delta_4 = 0$ (кривая 1), $\delta_2 \neq 0$, $\delta_3 = 0, \delta_4 = 0$ (кривая 2), $\delta_2 \neq 0, \delta_3 \neq 0, \delta_4 = 0$ (кривая 3), $\delta_2 \neq 0, \delta_4 \neq 0, \delta_3 = 0$ (кривая 4), $\delta_2 = -0.92 \times 10^{-3} K^{-1}, \ \delta_3 = -0.59 \times 10^{-3} K^{-1}, \ \delta_4 = 7.14 \times 10^{-3} K^{-1}$ (кривая 5); *б*- для MgO (кривая 1), Al₂O₃ (кривая 2) и *TiO*₂. (кривая 3).

Случай 2. Предполагается, что образец плотно прикреплен к массивной подложке, вторая поверхность которой погружена в воду [4] (термостат), а облучение поверхности образца проводится в вакууме. Для этого случая систему нелинейных уравнений теплопроводности для образца и подложки можно написать в виде:

$$\frac{d}{dx} \left[\kappa_1 \left(T_1' \right) \frac{dT_1'}{dx} \right] = -\frac{EJ}{RZe} \Theta(R - x), \qquad 0 < x < R, \qquad (8)$$

$$\frac{d}{dx} \left[\kappa_2(T_3') \frac{dT_3'}{dx} \right] = 0, \qquad L_1 < x < L_1 + L_2.$$
(10)

Здесь $k_2(T_2)$, L_2 - коэффициент теплопроводности и толщина подложки. Введём следующие обозначения приращения температуры на поверхностях образца, подложки, включая и поверхности, обеспечивающие контакты этих частей: $T'_1(0) = U_0$, $T'_1(R) = T'_2(R) = W_0$, $T'_2(L_1) = T'_3(L_1) = \Theta_0$, $T'_3(L_1 + L_2) = 0$. Условия непрерывности потоков тепла можно написать в виде

$$\kappa_{1} \frac{\partial T_{1}'}{\partial x}\Big|_{x=0} = A^{(0)} \sigma (U^{4} - T_{0}^{4})\Big|_{x=0}, \frac{\partial T_{3}'}{\partial x}\Big|_{x=L_{1}+L_{2}} = 0, \\ \kappa_{1} (T_{1}) \frac{\partial T_{1}'}{\partial x}\Big|_{x=R} = \kappa_{1} (T_{2}) \frac{\partial T_{2}'}{\partial x}\Big|_{x=R}, \\ \kappa_{1} (T_{2}) \frac{\partial T_{2}'}{\partial x}\Big|_{x=L_{1}} = \kappa_{2} (T_{3}) \frac{\partial T_{3}'}{\partial x}\Big|_{x=L_{1}}.$$

Решение системы (8)-(10), удовлетворяющее этим граничным условиям, имеет следующий вид:

$$g_{1}(x) = -1 + \{(1 + \delta_{2(1)}U_{0})^{2} + \delta_{2(1)}[2(W_{0} - U_{0}) + \delta_{2(1)}(W_{0}^{2} - U_{0}^{2})]\frac{x}{R} - \frac{\delta_{2(1)}Ejx}{Ze\kappa_{1}^{(0)}}(\frac{x}{R} - 1)\}^{1/2}, \quad (11)$$

$$g_{2}(x) = -1 + \{(1 + \delta_{2(1)}W_{0})^{2} + \delta_{2(1)}[2(\Theta_{0} - W_{0}) + \delta_{2(1)}(\Theta_{0}^{2} - W_{0}^{2})]\frac{x - R}{L_{1} - R}\}^{1/2},$$
(12)

$$g_{3}(x) = -1 + \{1 + \delta_{2(2)}\Theta_{0}(2 + \delta_{2(1)}\Theta_{0})\frac{L_{1} + L_{2} - x}{L_{2}}\}^{1/2}.$$
(13)

Для определения величин U_0 , W_0 , Θ_0 из граничных условий получим следующую систему нелинейных алгебраических уравнений:

$$\delta_2(U_0^2 - W_0^2) + 2(U_0 - W_0) + \frac{EJR}{Zek_1^{(0)}} - \frac{A^{(0)}R\sigma}{k_1^{(0)}}(1 + \delta_3 U_0)(U^4 - T_0^4) = 0, \qquad (14)$$

$$\delta_2 U_0^2 + 2U_0 - (\delta_2 W_0^2 + 2W_0)(1 + \frac{R}{L - R}) + (\frac{R}{L - R})(\delta_2 \Theta_0^2 + 2\Theta_0) + \frac{EJR}{Zek_1^{(0)}} = 0, \quad (15)$$

$$\Theta_0^2(\delta_{2(1)} + a\delta_{2(2)}) + 2\Theta_0(1+a) - \delta_{2(1)}W_0^2 - 2W_0 = 0,$$
(16)

где $a = \frac{\kappa_2^{(0)}(L_1 - R)}{\kappa_1^{(0)}L_2}$. Очевидно, что и в этом случае для определения зависимостей величин U_0 , W_0 , Θ_0 от параметров падающего потока ионов необходимо численное решение системы (14)-(16). Нами выполнен этот расчет и, в частности, обнаружено уменьшение величины U_0 с ростом теплопроводности подложки, что и следовало ожидать.

В параграфе 2.2 исследовано влияние ТН теплофизических величин и степени черноты подложки на ТП диэлектриков в поле непрерывного пучка ионов в воздухе и вакууме. Для описания ТП справедлива система нелинейных уравнений теплопроводности (8) - (10). Однако при этом существенно будут отличаться граничные условия на границах облучаемая поверхностьвоздух и подложка – воздух. Эти условия можно записать в следующем виде:

$$T_{3}'(L_{1}+L_{2}) = \Theta_{1}, \ \kappa_{1}^{(0)}(1+\delta_{2(1)}T_{1}')\frac{\partial T_{1}}{\partial x}\Big|_{x=0} = h_{1}U_{0} + A_{1}\sigma(U^{4}-T_{0}^{4})\Big|_{x=0},$$

$$-\kappa_{2}^{(0)}(1+\delta_{2(2)}T_{3}')\frac{\partial T_{3}}{\partial x}\Big|_{x=L+L_{2}}=h_{2}\Theta_{1}+A_{2}\sigma(U_{1}^{4}-T_{0}^{4})\Big|_{x=L}.$$

Решая систему (8)-(10), получим следующие выражения:

$$g_1(x) = -1 + \{1 + \delta_{2(1)} [(1 - \frac{x}{R})(2U_0(1 + 0.5\delta_{2(1)}U_0) + \frac{EJx}{Zek_1^{(0)}}) + 2W_0(1 + 0.5\delta_{2(1)}W_0)\frac{x}{R}]\}^{1/2}, \quad (17)$$

$$g_{2}(x) = -1 + \{1 + \frac{2\delta_{2(1)}}{L_{1} - R} [\Theta_{0}(1 + 0.5\delta_{2(1)}\Theta_{0})(x - R) + W_{0}(1 + 0.5\delta_{2(1)}W_{0})(L_{1} - x)]\}^{1/2}, \quad (18)$$

$$g_{3}(x) = -1 + \{1 + 2\delta_{2(2)}\Theta_{0}(1 + 0.5\delta_{2(2)}\Theta_{0})\frac{L_{1} + L_{2} - x}{L_{2}} + 2\delta_{2(2)}\Theta_{1}(1 + 0.5\delta_{2(2)}\Theta_{1})\frac{x - L_{1}}{L_{2}}\}^{1/2}.$$
 (19)

Для определения величин $U_0, W_0, \Theta_0, \Theta_1$ из граничных условий получим следующую систему нелинейных алгебраических уравнений:

$$\delta_2(U_0^2 - W_0^2) + 2(U_0 - W_0) - \frac{EJR}{Zek^{(0)}} + \frac{2h^{(0)}R}{k^{(0)}}U_0(1 + \delta_4 U_0) + \frac{2A^{(0)}R\sigma}{k^{(0)}}(1 + \delta_3 U_0)(U^4 - T_0^4) = 0, \quad (20)$$

$$\delta_2 U_0^2 + 2U_0 - (\delta_2 W_0^2 + 2W_0)(1 + \frac{R}{L - R}) + (\frac{R}{L - R})(\delta_2 \Theta_0^2 + 2\Theta_0) + \frac{EJR}{Zek^{(0)}} = 0, \qquad (21)$$

$$\Theta_0^2(a_1\delta_{2(1)} + \delta_{2(2)}) + 2\Theta_0(a_1 + 1) - W_0^2 a_1\delta_{2(1)} - 2W_0a_1 - \delta_{2(2)}\Theta_1^2 - 2\Theta_1 = 0,$$
(22)

$$\delta_{2(2)}(\Theta_0^2 - \Theta_1^2) + 2(\Theta_0 - \Theta_1) - \frac{2h_2^{(0)}L_2\Theta_1(1 + \delta_{4(1)}\Theta_1)}{k_2^{(0)}} - \frac{2A_2^{(0)}L_2(1 + \delta_{3(2)}\Theta_1)\sigma}{k_2^{(0)}}[(\Theta_1 + T_0)^4 - T_0^4] = 0, \quad (23)$$

где $a_1 = [k_1^{(0)}L_2/k_2^{(0)}(L_1 - R)]$. Система уравнений (20)-(21) позволяет путем численного решения определить зависимости величин U_0 , W_0 , Θ_0 и Θ_1 от параметров падающего пучка ионов. Результаты такого расчета для случая трех различных подложек показаны на рис. 2 a, δ .

Рис. 2. Зависимости приращения температуры от величины $I = \epsilon I / RZe$ для облучаемой свободной плёнки MgO (*a*) и плёнки MgO на подложках из ZrO₂ (кривая 1), SiO₂ (кривая 2), Al₂O₃ (кривая 3) (*б*).

Из рис. 2 *а* и б видно, что с ростом теплопроводности подложки возрастает перенос тепла из образца на тыловую поверхность подложки, а затем посредством конвекции и излучения в наружную среду. Этим обусловлено и уменьшение температуры поверхности образца при переходе от подложки со сравнительно низким значением теплопроводности (кривая 1) к подложкам с боле высокими значениями $k_i^{(0)}$ (кривые 2 и 3).

Выше мы рассмотрели случай, когда система образец-подложка находится в воздухе. Для случая, когда облучение образца производится в вакууме, в уравнениях (20) и (23) достаточно совершить переход $h_i^{(0)} \rightarrow 0$. С учетом этого обстоятельства нами получено численное решение системы уравнений (20) - (24), графически представленное на рис. 3. Из этого рисунка видно, что зависимость температуры тыловой стороны подложки Θ_1 от величины $I = \epsilon J / RZe$ для этого случая является не тривиальным. Нам представляется, что эта зависимость формируется в конкуренции со слабым ростом теплопроводности оксида циркония ($\delta_2 > 0$) и существенным уменьшением ($\delta_2 < 0$) этой величины для сапфира и SiO₂.

Рис. 3. Зависимость приращения температуры облучаемой в вакууме поверхности плёнки MgO $U_0(a)$ и тыловой поверхности подложки $\Theta_1(b)$ от величины $I = \varepsilon I / RZe$ на: 1- ZrO₂; 2-SiO₂; 3-сапфире Al₂O₃.

В параграфе 2.3 приведены результаты исследования по влиянию термостатирования подложки на ТП диэлектрических пленок и подложки в поле непрерывного пучка ионов в воздухе. Исходим из нелинейной системы уравнений (8)-(10). Для рассматриваемого случая введём следующие обозначения приращения температуры на поверхностях образца, подложки, включая поверхности, обеспечивающие контакты этих частей:

$$T'_1(0) = U_0, \ T'_1(R) = T'_2(R) = W_0, \ T'_2(L_1) = T'_3(L_1) = \Theta_0, \ T'_3(L_1 + L_2) = 0.$$

Условия непрерывности потоков тепла при этом можно написать в виде [4]

$$\kappa_{1}^{(0)} (1 + \delta_{2(1)}T_{1}') \frac{\partial T_{1}'}{\partial x}\Big|_{x=0} = h(U)U_{0} + \sigma [A(U)U^{4} - A^{(0)}T_{0}^{4}]\Big|_{x=0}, \frac{\partial T_{3}'}{\partial x}\Big|_{x=L_{1}+L_{2}} = 0,$$

$$\kappa_{1} (T_{1}) \frac{\partial T_{1}'}{\partial x}\Big|_{x=R} = \kappa_{1} (T_{2}) \frac{\partial T_{2}'}{\partial x}\Big|_{x=R}, \kappa_{1} (T_{2}) \frac{\partial T_{2}'}{\partial x}\Big|_{x=L_{1}} = \kappa_{2} (T_{3}) \frac{\partial T_{3}'}{\partial x}\Big|_{x=L_{1}}.$$

Решение системы (8)-(10), удовлетворяющее этим граничным условиям, имеет следующий вид:

$$g_{1}(x) = -1 + \{(1 + \delta_{2(1)}U_{0})^{2} + \delta_{2(1)}[2(W_{0} - U_{0}) + \delta_{2(1)}(W_{0}^{2} - U_{0}^{2})]\frac{x}{R} - \frac{\delta_{2(1)}Ejx}{Ze\kappa_{1}^{(0)}}(\frac{x}{R} - 1)\}^{1/2}, \quad (28)$$

$$g_{2}(x) = -1 + \{(1 + \delta_{2(1)}W_{0})^{2} + \delta_{2(1)}[2(\Theta_{0} - W_{0}) + \delta_{2(1)}(\Theta_{0}^{2} - W_{0}^{2})]\frac{x - R}{L_{1} - R}\}^{1/2},$$
(29)

$$g_{3}(x) = -1 + \{1 + \delta_{2(2)}\Theta_{0}(2 + \delta_{2(1)}\Theta_{0})\frac{L_{1} + L_{2} - x}{L_{2}}\}^{1/2}.$$
(30)

Для определения величин U_0 , W_0 , Θ_0 из выше приведенных граничных условий получим следующую систему нелинейных алгебраических уравнений:

$$\delta_{2(1)}(U_0^2 - W_0^2) + 2(U_0 - W_0) - \frac{EJR}{Zek_1^{(0)}} + \frac{2h^{(0)}R(1 + \delta_4 U_0)}{k_1^{(0)}} + \frac{2A^{(0)}R\sigma}{k_1^{(0)}}[(1 + \delta_3 U_0)(U_0 + T_0)^4 - T_0^4] = 0, \quad (31)$$

$$\delta_{2(1)}U_0^2 + 2U_0 - (\delta_{2(1)}W_0^2 + 2W_0)(1 + \frac{R}{L - R}) + (\frac{R}{L - R})(\delta_{2(1)}\Theta_0^2 + 2\Theta_0) + \frac{EJR}{Zek_1^{(0)}} = 0, \quad (32)$$

$$\Theta_0^2(\delta_{2(1)} + a\delta_{2(2)}) + 2\Theta_0(1+a) - \delta_{2(1)}W_0^2 - 2W_0 = 0,$$
(33)

где $a = \frac{\kappa_2^{(0)}(L_1 - R)}{\kappa_1^{(0)}L_2}$. Из выражения (28) нетрудно обнаружить, что простран-

ственное распределение температуры имеет небольшой максимум при $x \approx 0.5R$. Отметим, что при $h \to 0$ получаются результаты, приведенные в

параграфе 2.2, что соответствует случаю облучения в вакууме. И здесь нами получено численное решение системы (31)-(33) и найдена зависимость величин U_0, W_0, Θ_0 от I = EJ / Ze. Оказалось, что зависимость U_0 от I = EJ / Ze является нелинейной.

В параграфе 2.4 приведены результаты исследования по влиянию ТН теплофизических величин и степени черноты на ТП тонких пленок полиимида в поле непрерывного пучка протонов. Отметим, что эта рабата выполнена в сотрудничестве с Бондаренко В.Н., Гончаровым А.В., Сухоставцем В.И. (сотрудники Харьковского ФТИ) [26], где выполнялся эксперимент. Согласно [25] в полиимиде марки Карton Н величина $R \sim 20 \cdot 10^{-6} M$, то есть в принципе, может равняться толщине образца. В [25] методом пирометрии в вакууме измерялась температура поверхности полиимидных пленок марки Карton Н при их облучении потоком протонов при различных значениях плотности тока *J* и начальной энергии частиц *E*. Тогда справедливо следующее нелинейное уравнение теплопроводности [3]:

$$\frac{d}{dx}\left[\kappa(T_1)\frac{dT_1'}{dx}\right] = -\frac{EJ}{eR}.$$
(34)

Принимая во внимание TH $\kappa(T')$, уравнение (34) можно переписать в виде

$$\frac{d}{dx}\left[\frac{dT'}{dx} + \frac{\delta_2}{2}\frac{d(T')^2}{dx}\right] = -\frac{EJ}{eR\kappa^{(0)}(T_0)}.$$
(35)

Предположим, что $U = U_0 + T_0$, $U_1 = \Theta_0 + T_0$ являются установившимися температурами облучаемой и тыловой поверхностей образца соответственно, а U_0 и Θ_0 - их приращения. Два граничных условия, необходимых для решения уравнения (35), можно записать в виде [4]

$$\kappa^{(0)}(1+\delta_2 T')\frac{\partial T'_1}{\partial x}\Big|_{x=0} = hU_0 + \sigma(A(U)U^4 - A(T_0)T_0^4)\Big|_{x=0},$$
(36)

$$-\kappa^{(0)}(1+\delta_2 T_1')\frac{\partial T_1'}{\partial x}\Big|_{x=L} = h\Theta_0 + \sigma [A(U_1)U_1^4 - A(T_0)T_0^4]\Big|_{x=L} .$$
(37)

Принимая во внимание ТН величин *h* и *A*, получим решение уравнения (35) вида

$$g(x) = -1 + \{1 + 2\delta_2 [(U_0 + 0.5\delta_2 U_0^2)(1 - \frac{x}{L}) + (\Theta_0 + 0.5\delta_2 \Theta_0^2)\frac{x}{L} + \frac{G(L, R)EJx(L - x)}{2RZek^{(0)}}]\}^{1/2}, \quad (38)$$

описывающее пространственное распределение температуры в пленке. Выражение (38) и граничные условия (36) и (37) позволяют получить следующую систему нелинейных алгебраических уравнений для определения величин U_0, Θ_0 :

$$\delta_{2}(U_{0}^{2} - \Theta_{0}^{2}) + 2(U_{0} - \Theta_{0}) - \frac{EJL^{2}}{RZek^{(0)}} + \frac{2h^{(0)}L}{k^{(0)}}U_{0}(1 + \delta_{4}U_{0}) + \frac{2A^{(0)}L\sigma}{k^{(0)}}(1 + \delta_{3}U_{0})(U^{4} - T_{0}^{4}) = 0, \quad (39)$$

$$\delta_2(U_0^2 - \Theta_0^2) + 2(U_0 - \Theta_0) + \frac{EJL^2}{RZek^{(0)}} - \frac{2h^{(0)}L}{k^{(0)}}\Theta_0(1 + \delta_4\Theta_0) - \frac{2A^{(0)}L\sigma}{k^{(0)}}(1 + \delta_3\Theta_0)(U_1^4 - T_0^4) = 0.$$
(40)

Нами получено численное решение этой системы для полиимида марки Карton H, для которого численные значения параметров имеют значения: $k^{(0)} = 0.155 Bm / M \cdot K$ [26], $\delta_2 = 8.4 \times 10^4$ K⁻¹, $A^{(0)} = 0.95$ [26], $\delta_3 = 1.4 \times 10^4$ K⁻¹, $L = 20 \times 10^{-6}$ M. В табл. 2 приведены значения энергии и длина пробега протонов для этой системы [25]. Отметим, что в [25] эксперимент выполнен в вакууме, где h = 0. Таблица 2

Численные значения начальной энергии и длина пробега протонов в ПИ (Kapton H) согласно [25]

Е, кэВ	10 ³	$1,2x10^3$	$1,4 \times 10^3$	$1,6 ext{ x10}^3$
R, мкм	19,2	25,6	32,6	40,4

Рис. 4. Зависимость приращения температуры облучаемой поверхности полиимидной пленки марки Kapton H от плотности тока при бомбардировке потоком протонов различной энергии. Сплошная и штриховая линии- расчет.

Результаты расчета и сравнение с экспериментом показаны на рис. 4 *а* и *б*. Из этих графиков видно, что совпадение результатов расчета с экспериментом вполне удовлетворительное.

Глава третья посвящена разработке теории генерации линейного и нелинейного ТВ в диэлектрических пленках без подложки при облучении гармонически модулированным ионным пучком и состоит из трех параграфов. Теплофизическая модель задачи предложена в параграфе 3.1, где для описания стационарного и нестационарного полей температуры используется следующая система нелинейных уравнений теплопроводности:

$$C_1 \frac{\partial T_1}{\partial t} = \frac{\partial}{\partial x} [\kappa_1(T_1) \frac{\partial T_1}{\partial x}] + \frac{EJ}{2RZe} \Theta(R - x)(1 + e^{i\omega t}), \qquad 0 \le x \le R, \qquad (41)$$

$$C_2 \frac{\partial T_2}{\partial t} = \frac{\partial}{\partial x} [\kappa_2(T_2) \frac{\partial T_2}{\partial x}], \qquad R \le x \le L, \qquad (42)$$

В (41)-(42) для общности рассматриваемой задачи считается что, теплофизические величины соответствующих слоев не являются идентичными. Четыре граничных условия, необходимых для решения системы (41)-(42), имеют вид [4]

$$\kappa_{1}(T_{1})\frac{\partial T_{1}}{\partial x}\Big|_{x=0} = h_{1}(T_{1}-T_{0}) + A_{1}\sigma_{0}(T_{1}^{4}-T_{0}^{4}), \quad T_{1}(t,x)\Big|_{x=R} = T_{2}(t,x)\Big|_{x=R},$$
(43)

$$-\kappa_{2}(T_{2})\frac{\partial T_{2}}{\partial x}\Big|_{x=L} = h_{2}(T_{2}-T_{0}) + A_{2}\sigma_{0}(T_{2}^{4}-T_{0}^{4}), \\ \kappa_{1}(T_{1})\frac{\partial T_{1}}{\partial x}\Big|_{x=R} = \kappa_{2}(T_{2})\frac{\partial T_{2}}{\partial x}\Big|_{x=R}.$$
(44)

Возмущение температуры представлено в виде суммы локально-равновесной $T_{0(i)}(x)$, линейных $\Phi_{L(i)}(x,t)$ и нелинейных $\Phi_{N(i)}(x,t)$ частей, т.е. в виде

$$T'_{i}(x,t) = T_{0(i)}(x) + \Phi_{L(i)}(x,t) + \Phi_{1N(i)}(x,t) + \Phi_{2N(i)}(x,t), \qquad (45)$$

где $\Phi_{1N(i)}$ и $\Phi_{2N(i)}$ - нелинейные составляющие колебания температуры соответствующего слоя на основной и второй гармониках.

Тогда система уравнений (41) - (42) распадается на следующие системы для $T_{0(i)}(x)$, $\Phi_{L(i)}(x,t)$, $\Phi_{1N(i)}(x,t)$ и $\Phi_{2N(i)}(x,t)$:

$$\frac{d}{dx}\left[\frac{dT_{0(1)}}{dx} + \frac{\delta_{2(1)}}{2}\frac{d(T_{0(1)})^2}{dx}\right] = -\frac{I}{\kappa_1^{(0)}(T_0)}, \qquad 0 \le x \le R, \qquad (46)$$

$$\frac{d}{dx} \left[\frac{dT_{0(2)}(x)}{dx} + \frac{\delta_{2(2)}}{2} \frac{d(T_{0(2)})^2}{dx} \right] = 0, \qquad R \le x \le L .$$
(47)

$$\frac{\partial^2 \Phi_{L(1)}}{\partial x^2} - \frac{1}{\chi_1^{(0)}} \frac{\partial \Phi_{L(1)}}{\partial t} = -\frac{I}{\kappa_1^{(0)}(T_0)} \exp(i\omega t), \qquad 0 \le x \le R, \qquad (48)$$

$$\frac{\partial^2 \Phi_{L(2)}}{\partial x^2} - \frac{1}{\chi_2^{(0)}} \frac{\partial \Phi_{L(2)}}{\partial t} = 0, \qquad R \le x \le L , \qquad (49)$$

$$\frac{\partial^2 \Phi_{1N(1)}}{\partial x^2} - \frac{1}{\chi_1^{(0)}} \frac{\partial \Phi_{1N(1)}}{\partial t} = -(\delta_{2(1)} \frac{\partial^2}{\partial x^2} - \frac{\delta_{(1)}}{\chi_1^{(0)}} \frac{\partial}{\partial t})(T_0(x) \Phi_{L(1)}(x,t)),$$
(50)

$$\frac{\partial^2 \Phi_{1N(2)}}{\partial x^2} - \frac{1}{\chi_2^{(0)}} \frac{\partial \Phi_{1N(2)}}{\partial t} = -(\delta_{2(2)} \frac{\partial^2}{\partial x^2} - \frac{\delta_{(2)}}{\chi_2^{(0)}} \frac{\partial}{\partial t})(T_0(x) \Phi_{L(2)}(x,t)), (51)$$

$$\frac{\partial^2 \Phi_{2N(1)}}{\partial x^2} - \frac{1}{\chi_1^{(0)}} \frac{\partial \Phi_{2N(1)}}{\partial t} = -\frac{1}{2} \left(\delta_{2(1)} \frac{\partial^2}{\partial x^2} - \frac{\delta_{(1)}}{\chi_1^{(0)}} \frac{\partial}{\partial t} \right) (\Phi_{L(1)}^2(x,t)),$$
(52)

$$\frac{\partial^2 \Phi_{2N(2)}}{\partial x^2} - \frac{1}{\chi_2^{(0)}} \frac{\partial \Phi_{2N(2)}}{\partial t} = -\frac{1}{2} \left(\delta_{2(2)} \frac{\partial^2}{\partial x^2} - \frac{\delta_{(2)}}{\chi_2^{(0)}} \frac{\partial}{\partial t} \right) \left(\Phi_{L(2)}^2(x,t) \right).$$
(53)

Здесь I = EJ/ZeR, $\chi_i^{(0)} = \kappa_i^{(0)}/C_p^{(0)}$ - температуропроводности соответствующих слоев при $T = T_0$ -начальной температуре образца, $B_i = h_i^{(0)} + 4\sigma A_i^{(0)}T_0^3$. Нетрудно заметить, что сформулированная задача распадается на четыре подзадачистационарное поле температуры, линейные и нелинейные ТВ на основных и вторичных гармониках. Особенности формирования стационарного ТП подробно исследованы в предыдущей главе, оставшиеся же задачи рассмотрены в настоящей главе.

В параграфе 3.2 приведено решение системы уравнений для линейной составляющей колебания температуры, где получены выражения

$$\Phi_{L(1)} = \frac{I}{2k_1^{(0)}(T_0)\sigma_1^2} e^{-\sigma_1 x + i\pi}, \qquad \Phi_{L(2)} = \frac{\xi B_1}{k_1^{(0)}(T_0)\sigma_1^3} e^{-\sigma_2 (x-R) + i\pi}.$$
(54)

Здесь $\sigma_i^2 = i\omega/\chi_i^{(0)}, \sigma_i = (1+i)/\mu_i, \mu_i = (2\chi_{0(i)}/\omega)^{1/2}$ - длина тепловой диффузии. Из (54) следует, что частотная зависимость амплитуды линейного составляющего возбуждаемой ТВ в облучаемом слое $\propto \omega^{-1}$, в то время как для необлучаемого слоя $\propto \omega^{-3/2}$. Результаты расчета этих зависимостей приведены на рис. 5 *а*, *б*. Расчет выполнен для значения $I = 10^8 Bm/m^2$.

Решению системы уравнений для основной гармоники нелинейного колебания температуры посвящен параграф 3.3. Получено решение гранич-

Рис. 5. Частотная зависимость амплитуды линейной тепловой волны в облучаемой (*a*) и оставшейся (б) частях образца MgO при $I = 10^8 Bm/m^2$ на подложках из: $SiO_2(1)$, $ZrO_2(2)$ и MgO(3).

ной задачи для системы уравнений (50) - (51) и обнаружилось, что частотные зависимости амплитуды возбуждаемой основной гармоники нелинейной тепловой волны имеют вид $\Phi_{1N(1)}(x,\omega) \approx \frac{C_1}{\omega} + \frac{C_2}{\omega^2} + \frac{C_3}{\omega^{5/2}}, \quad \Phi_{1N(2)}(x,\omega) \approx \frac{K_1}{\omega} + \frac{K_2}{\omega^{3/2}} + \frac{K_3}{\omega^2},$ где величины C_i и K_i являются константами.

Параграф 3.4. посвящен решению системы уравнений (52) - (53) для ВГ нелинейного колебания температуры. Из полученного решения следуют следующие частотные зависимости амплитуды возбуждаемой ВГ тепловой волны в облучаемой и необучаемой частях образца:

$$\Phi_{2N(1)}(x,\omega) \sim \frac{A_1}{\omega^2} + \frac{A_2}{\omega^3}, \quad \Phi_{2N(2)}(x,\omega) \sim \frac{H_1}{\omega^2} + \frac{H_2}{\omega^3} + \frac{H_3}{\omega^4}$$

Здесь *A_i* и *H_i* есть коэффициенты, которые зависят от теплофизических параметров обоих слоев образца и их термических коэффициентов.

Четвертая глава посвящена разработке теории генерации линейных и нелинейных тепловых волн в диэлектрических пленках на подложке при облучении гармонически модулированным ионным пучком. В 4.1 сформулирована теплофизическая модель задачи. Исходным является следующая система трех нелинейных уравнений теплопроводности для соответствующих слоев:

$$C_1 \frac{\partial T_1}{\partial t} = \frac{\partial}{\partial x} \left[\kappa_1(T_1) \frac{\partial T_1}{\partial x} \right] + \frac{EJ}{2RZe} \Theta(R - x)(1 + e^{i\omega t}), \qquad 0 \le x \le R, \qquad (55)$$

$$C_2 \frac{\partial T_2}{\partial t} = \frac{\partial}{\partial x} [\kappa_2(T_2) \frac{\partial T_2}{\partial x}], \qquad R \le x \le L_1, \qquad (56)$$

$$C_{3}\frac{\partial T_{3}}{\partial t} = \frac{\partial}{\partial x} [\kappa_{3}(T_{3})\frac{\partial T_{3}}{\partial x}]. \qquad \qquad L_{1} \le x \le L_{1} + L_{2}.$$
(57)

Приведены шесть граничных условий, необходимых для решения этой системы. Здесь же величина возмущения температуры $T'_i(x,t)$ представлена в виде суммы линейных $\Phi_{L(i)}(x,t)$, нелинейных $\Phi_{N(i)}(x,t)$ и локально-равновесных $T_{0(i)}(x)$ составляющих. Сформулированная задача распадается на четыре подзадачи: стационарное ТП, линейное и нелинейное ТВ на основных и ВГ. Стационарное ТП исследовано во второй главе. Решение линейной задачи получено в параграфе 4.2 и обнаружено, что в облучаемом слое частотная зависимость амплитуды линейной составляющей возбуждаемой тепловой волны $\propto \omega^{-1}$, а для двух необлучаемых слоев $\propto \omega^{-3/2}$. В 4.3 решена система уравнений для ОГ нелинейной ТВ в образце. Полученные выражения для $\Phi_{1N(i)}$ являются достаточно сложными. Аналогичным образом в 4.4 получено решение систем уравнений для ВГ возбуждаемой нелинейной ТВ.

ЗАКЛЮЧЕНИЕ И ОСНОВНЫЕ ВЫВОДЫ

1. Теоретически исследовано влияние ТН коэффициента теплопроводности на формирование стационарного ТП диэлектриков при облучении пучком ионов. Рассмотрены два случая: 1) свободный образец облучается в воздухе; 2) образец прикреплен на массивную подложку, вторая поверхность которой погружена в воду, а облучение производится в вакууме. Для всех рассмотренных случаев получены аналитические выражения для ТП, а также система взаимосвязанных нелинейных алгебраических уравнений для установившейся температуры облучаемой и тыловой поверхностей и на границе между её облучаемой и необлучаемой частями. 2. Теоретически исследовано влияние ТН коэффициентов теплопроводности, теплоотдачи и степени черноты пленки и подложки на формирование стационарного ТП системы диэлектрик-подложка при облучении непрерывным пучком ионов в воздухе. Получены аналитические выражения для ТП образца и подложки, а также получена система взаимосвязанных нелинейных алгебраических уравнений для характерных температур. Численным решением системы нелинейных алгебраических уравнений найдены зависимости температуры облучаемой поверхности системы образец-подложка, а также тыловой стороны этой системы от параметров падающего пучка ионов.

3. Теоретически исследовано влияние ТН теплофизических величин на стационарное ТП тонких диэлектриков при их облучении пучком протонов в воздушной среде. Получено выражение, описывающее пространственное распределение этого поля. Выведена система взаимосвязанных нелинейных алгебраических уравнений для установившейся температуры облучаемой и тыловой поверхностей образца. Выполнено сравнение с экспериментом (для полиимидной пленки марки Kapton H) и обнаружено вполне удовлетворительное совпадение результатов теории с экспериментом.

4. Для случая, когда источник, обеспечивающий перевод энергии ионов в тепло является гармонически модулированным по частоте, сформулирована теплофизическая модель задачи возбуждения ТВ в однослойных диэлектрических пелёнках, находящихся в воздухе. Возмущение температуры представлено в виде суммы стационарной и колебательной составляющей, а колебательная часть в виде суммы линейной и нелинейной. В свою очередь, нелинейная часть состоит из суммы колебаний на основной и ВГ. Получены явный виды выражений для всех частей колебательной составляющей возмущения температуры. Обнаружено, что:

1) частотная зависимость амплитуды линейного составляющего возбуждаемой тепловой волны в облучаемом слое $\propto \omega^{-1}$, в то врем, как для необучаемого слоя $\propto \omega^{-3/2}$;

2) частотные зависимости амплитуды возбуждаемой ОГ нелинейной ТВ описываются выражениями $\Phi_{1N(1)}(x,\omega) \approx \frac{C_1}{\omega} + \frac{C_2}{\omega^2} + \frac{C_3}{\omega^{5/2}}, \ \Phi_{1N(2)}(x,\omega) \approx \frac{K_1}{\omega} + \frac{K_2}{\omega^{3/2}} + \frac{K_3}{\omega^2},$

где *C_i* и *K_i* коэффициенты, которые зависят от теплофизических параметров обоих слоев образца и их термических коэффициентов.

3)частотные зависимости амплитуды возбуждаемой ВГ нелинейной ТВ в обоблучаемой и не облучаемой средах имеют вид $\Phi_{2N(1)}(x,\omega) \sim \frac{A_1}{\omega^2} + \frac{A_2}{\omega^3}$, $\Phi_{2N(2)}(x,\omega) \sim \frac{H_1}{\omega^2} + \frac{H_2}{\omega^3} + \frac{H_3}{\omega^4}$, где A_i и H_i - также коэффициенты.

5. Сформулирована математическая модель задачи генерации линейных и нелинейных ТВ в диэлектрических пленках, прикрепленных на подложке и находящихся в воздухе посредством гармонически модулированного по частоте пучка ионов. Решением граничной задачи получены явные виды выражений для всех частей колебательной составляющей возмущения температуры.

Цитируемая литература

1.Вайсбурда Д.И., Семина Б.Н., Таванова Э.Г., Матлис С.Б., Геринга Г.И., Балычева И.Н. Высокоэнергетическая электроника твердого тела // М.: Наука. -1982.-224с.

2.Бойко В.И., Валяев А.Н., Погребняк А.Д. Модификация металлических материалов импульсными пучками частиц //УФН.-1999.-Т.169.-№11.- С.1243.

3.Вайсбурд Д.И., Пичугин В.Ф., Чебодаев М.И. Влияние термического сопротивления контакта диэлектрик-металл на температурное поле в диэлектрике при облучении ионным пучком//Изв. ВУЗов. Физика.-2001.-№4.-С.39-43.

4.Бойко В.И., Скворцов В.А., Фортов В.Е., Шаманин И.В. Взаимодействия импульсных пучков заряженных частиц с веществом // М.: ФИЗМАТЛИТ. - 2003.- 288 с.

5.Черняев А.П. Взаимодействия ионизирующего излучения с веществом // М.: ФИЗМАТЛИТ.-2004.-152 с.

6.Комаров Ф.Ф. Дефектообразование и трекообразование в твердых телах при облучении ионами сверхвысоких энергий // УФН, 2003.-Т.173.-№12.-С.1287-1318.

7.Фортов В.Е., Хоффманн Д., Шарков Б.Ю. Интенсивные ионные пучки для генерации экстремальных состояний вещества//УФН.-2008.-Т.178.-№2.-с.113.

8. Комаров Ф.Ф. Нано-и макроструктурирование твердых тел быстрыми тяжёлыми ионами // УФН.- 2017. -Т.175. - №5. - С. 465-504.

9. Lin Ai Lei Wang, Yang Tan, Shavkat Akhmadaliev, Shengqiang Zhou, and Feng Chen. Efficient Second Harmonic Generation of Diced Ridge Waveguides Based on Carbon Ion-irradiated Periodically Poled LiNbO3 // Journal of Lightwave Technology. - 2016. 2638920.

10. Shafiei S., Lamehi-Rashti M., Vosoughi Y. Design and Development of a Chopper for Ion Beam Current Measurement and Monitoring // Journal of Nuclear Research and Applications. - 2022. - № 2(2). - P. 13-19.

11. Joseph, D. D. Heat Waves // Reviews of Modern Physics. – 1989. – Vol. 61. – No.1,pp.41-73.

12.Ивлиев А. Д. Метод температурных волн в теплофизических исследованиях (анализ советского и российского опыта) //Теплофизика высоких температур. - 2009. - Т. 47. – Выпуск 5. – С. 771–792.

13.Шашков А.Г., Бубнов В.А., Яновский С.Ю. Волновые явления теплопроводности: Системно-структурный подход // М.: Едиториал УРСС. - 2004. -296 с.

14.Лямшев, Л.М. Наугольных К.А. Оптическая генерация звука. Нелинейные эффекты. Обзор // Акуст. Журн.- 1981.- Т.27.-, вып.5.- С.641-668.

15.Гусев В.Э., Карабутов А.А. Лазерная оптоакустика. М.: Наука.-1991.-304с. 16.Салихов Т.Х., Мадвалиев У., Шарифов Д.М., Туйчиев Х.Ш. К теории генерации нелинейного фотоакустического сигнала при газомикрофонной регистрации //Журн. технической физики.-2021.- Т.91.- Вып.11.-С.1608-1618. 17.Проскурин М.А., Хабибулин В.Р., Усольцева Л.О., Вырко Е.А., Михеев И.В., Волков Д.С.Фототермическая и оптоакустическая спектроскопия: Современное состояние и преспективы // УФН.- 2022.- Т.- 192. - №3. - с.294-340. 18.Егерев С.В., Симановский Я.О. Оптоакустика неоднородных медицинских сред: конкуренция механизмов и перспективы применения // Акустический журнал. - 2022. - Т.68. - №1. - С. 96-116.

19.Nag P.K. Heat transfer. Tata McGraw-Hill Publishing Company Limited. – 2002.- 729 p.

20. Физические величины. Справочник. Под редакции Григорьева И.С., Мейлихова Е.З.- М.: Энергоатомиздат. - 1991. –1232 с.

21. Физико - химические свойства окислов. Справочник. Под редакции Самсонова Г.В. -М.: Наука. - 1978. - 471с.

22. Тепловая изоляция. Справочник. Под редакции Г. Ф. Кузнецова. - М.: Стройиздат. - 1976. - 440с.

23.Р.Зигель, Дж. Хауэлл. Теплообмен излучением. Перевод с англ.//-М.: Мир, 1975.-935с.

24.Латыев Л.Н., Петров В.А., Чеховский В.Я., Шестаков Е.Н. Излучательные свойства твердых тел. Справочник. // М.: Энергия, 1974. -472с.

25. Бондаренко В.Н., Гончаров А.В., Сухоставец В.И., Салихов Т.Х., Абдурахмонов А. А. Контроль температуры полимерных пленок при облучении пучком ускоренных ионов // Восточно-европейский физический журнал. -2017.- Т.4. - №1. - С. 62-69.

26.David K. Lambert. Thermal Conductivity 21, Edited by C.J. Kremers and H.A. Fine, Plenium Press, New York, 1990. pp . 209-219.

Список публикаций по теме диссертации

1.Салихов Т.Х., Абдурахмонов А.А. Влияние температурной зависимости коэффициента теплопроводности на стационарное температурное поле диэлектриков в поле непрерывного пучка ионов //Вестник Таджикского национального университета. Серия естественных наук.–2016. -№1/1(192). - С.120-126. 2.Салихов Т.Х., Абдурахмонов А.А. Влияние температурной зависимости теплопроводности подложки на стационарное температурное поле диэлектриков в поле непрерывного пучка ионов в воздухе и вакууме //Вестник Таджикского национального университета. Серия естественных наук. – 2016. - №1/1(192). - С.164-170.

3.Салихов Т.Х., Абдурахмонов А.А., Рахими Ф.К. Влияние тепловой нелинейности теплофизических величин на стационарное температурное поле тонких пленок диэлектриков в поле непрерывного пучка протонов // Доклады АН Республики Таджикистан. - 2016. - Т. 59. - №,1-2. - С. 41-45.

4.Бондаренко В.Н., Гончаров А.В., Сухоставец В.И., Салихов Т.Х., Абдурахмонов А.А. Контроль температуры полимерных пленок при облучении пучком ускоренных ионов // Восточно-европейский физический журнал. -2017.-Т.4. - №1. - С. 62-69.

5.Салихов Т.Х., Абдурахмонов А.А. Температурное поле пленок диэлектриков в поле непрерывного пучка ионов // Теплофизика и аэромеханика.–2017.-Т.24.-№6.-С.981-984.

6.Салихов Т.Х., Абдурахмонов А.А. Формирование температурного поля диэлектрических пленок и подложки в поле непрерывного пучка ионов // Инженерно-физический журнал. – 2018. - Т.91. - №6. - С.131-138.

7.Салихов Т.Х., Абдурахмонов А.А. О стационарном температурном поле диэлектрических пленок и подложки в поле непрерывного пучка ионов // Вестник Таджикского национального университета. Серия естественных наук, 2017.-№4.-С.77-81.

8.Салихов Т. Х., Абдурахмонов А. А., Туйчиев Х. Ш. Температурное поле в полимерных пленках при облучении потоком ионов // Вестник Таджикского государственного педагогического университета им. С. Айни. Серия естественных наук. – 2022. - №4 (16). - С.179-184.

9.Салихов Т.Х., Абдурахмонов А.А. Особенности возбуждения тепловых волн в пленках диэлектриков при облучении гармонически модулированным

ионным пучком // Вестник Таджикского национального университета. Серия естественных наук, 2023.–№4.–С.109-122.

10.Салихов Т.Х., Абдурахмонов А.А. Математическая модель возбуждения линейных и нелинейных тепловых волн в диэлектрических пленках на подложке при облучении гармонически модулированным ионным пучком // Доклады НАН Таджикистана. 2024. Т. 67.№1-2.- С. 61-67.

11.Салихов Т.Х., Абдурахманов А.А. Особенности возбуждения линейных и нелинейных тепловых волн в диэлектрических пленках на подложке при облучении гармонически модулированным ионным пучком // Вестник Таджикского национального университета. Серия естественных наук, 2024.-№3.-С.87-103.

12. Салихов Т.Х., Абдурахмонов А.А. Влияние температурной зависимости коэффициента теплопроводности и степени черноты на температурное поле диэлектриков в поле непрерывного пучка ионов. Мат. 10-ой межд. теплофиз. школы «Теплофизические исследование и измерения при контроле качества вещества, материалов и изделий». Душанбе, 2016. - С. 92-104.

13.Салихов Т.Х., Абдурахмонов А.А., Махмалатиф А. Особенности возбуждения второй гармоники тепловых волн в диэлектрических пленках на твердой подложке гармонически модулированным ионным пучком // Матер. IX межд. науч. конф. «Современные проблемы физики»,Душанбе,2024.–С.55-60.